Part Number Hot Search : 
DS12R887 2A222 PIC16F8 ALSS0042 2A222 64HMY IRF22 MHW8242A
Product Description
Full Text Search
 

To Download VN920DSP04 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VN920DSP
HIGH SIDE DRIVER
Table 1. General Features
Type VN920DSP RDS(on) 16 m
Figure 1. Package
Iout
25 A
VCC
36 V
CMOS COMPATIBLE INPUT ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT
s s s
10
1
PowerSO-10
REVERSE BATTERY PROTECTION (*)
DESCRIPTION The VN920DSP is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).
Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both is on and off state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection.
Table 2. Order Codes
Package PowerSO-10TM
Note: (*) See application schematic at page 9
Tube VN920DSP
Tape and Reel VN920DSP13TR
Rev. 2 October 2004 1/19
VN920DSP
Figure 2. Block Diagram
VCC
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND Power CLAMP
INPUT LOGIC
DRIVER OUTPUT CURRENT LIMITER
STATUS
ON STATE OPENLOAD DETECTION OVERTEMPERATURE DETECTION
OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION
Table 3. Absolute Maximum Ratings
Symbol VCC - VCC - IGND IOUT - IOUT IIN ISTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy (L=0.25mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=45A) Power Dissipation TC=25C Junction Operating Temperature Case Operating Temperature Storage Temperature Value 41 - 0.3 - 200 Internally Limited - 25 +/- 10 +/- 10 4000 4000 5000 5000 362 96.1 Internally Limited - 40 to 150 - 55 to 150 Unit V V mA A A mA mA V V V V mJ W C C C
EMAX Ptot Tj Tc Tstg
2/19
VN920DSP
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
GROUND INPUT STATUS N.C. N.C.
6 7 8 9 10 11
5 4 3 2 1
OUTPUT OUTPUT N.C. OUTPUT OUTPUT
VCC
Connection / Pin Floating To Ground
Status X
N.C. X X
Output X
Input X Through 10K resistor
Figure 4. Current and Voltage Conventions
IS VCC VF
VCC
IOUT OUTPUT IIN INPUT VIN CURRENT SENSE VSENSE GND IGND ISENSE VOUT
Table 4. Thermal Data
Symbol Rthj-case Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max Max Value 1.3 51.3 (1) 37 (2) Unit C/W C/W
Note: (1) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35m thick). Note: (2) When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35m thick).
3/19
VN920DSP
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VUSDhyst VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Undervoltage Shut-down hysteresis Overvoltage Shut-down On State Resistance IOUT=10A IOUT=3A; VCC=6V Off State; VCC=13V; VIN=VOUT=0V IS Supply Current Off State; VCC=13V; VIN=VOUT=0V; 10 10 0 -75 Test Conditions Min 5.5 3 Typ 13 4 0.5 36 IOUT=10A; Tj=25C 16 30 50 25 20 5 50 0 5 3 Max 36 5.5 Unit V V V V m m m A A mA A A A A
Tj=25C
On State; VCC=13V; VIN=5V; IOUT=0A VIN=VOUT=0V VIN=0V; VOUT =3.5V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C
IL(off1) IL(off2) IL(off3) IL(off4)
Off Off Off Off
State State State State
Output Current Output Current Output Current Output Current
Table 6. Switching (V CC=13V)
Symbol td(on) td(off) dVOUT/ dt(on) dVOUT/ dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Turn-on Voltage Slope Test Conditions RL=1.3 RL=1.3 RL=1.3 Min Typ 50 50 See relative diagram See relative diagram Max Unit s s V/s
Turn-off Voltage Slope
RL=1.3
V/s
Table 7. Input Pin
Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V VIN=3.25V IIN=1mA IIN=-1mA 0.5 6 6.8 -0.7 Min 1 3.25 10 8 Typ Max 1.25 Unit V A V A V V V
4/19
VN920DSP
ELECTRICAL CHARACTERISTICS (continued) Table 8. VCC - Output Diode
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=5A; Tj=150C Min Typ Max 0.6 Unit V
Table 9. Status Pin
Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT =1.6mA Status Leakage Current Normal Operation VSTAT=5V Status Pin Input Normal Operation VSTAT=5V Capacitance ISTAT =1mA Status Clamp Voltage ISTAT =-1mA Min Typ Max 0.5 10 100 6 6.8 -0.7 8 Unit V A pF V V
Table 10. Protections (see note 1)
Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 30 5.5VTj>TTSD
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.
Table 11. Openload Detection
Symbol IOL tDOL(on) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V IOUT =0A Min 300 Typ 500 Max 700 200 Unit mA s
VOL
VIN=0V
1.5
2.5
3.5
V s
tDOL(off)
1000
5/19
VN920DSP
Figure 5.
OPEN LOAD STATUS TIMING (with external pull-up) VOUT > VOL VIN IOUT< IOL
OVERTEMP STATUS TIMING
Tj > TTSD VIN
VSTAT
VSTAT
tDOL(off)
tDOL(on)
tSDL
tSDL
Figure 6. Switching time Waveforms
VOUT 90% 80%
dVOUT/dt(on)
dVOUT/dt(off)
10%
t
VIN td(on)
td(off)
t
6/19
VN920DSP
Table 12. Truth Table
CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L
Table 13. Electrical Transient Requirements On V CC Pin
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
I C C C C C C
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
7/19
VN920DSP
Figure 7. Waveforms
NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst
OVERVOLTAGE VCCVOL VOL VCC>VOV
OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS
Tj INPUT LOAD CURRENT STATUS
TTSD TR
OVERTEMPERATURE
8/19
VN920DSP
Figure 8. Application Schematic
+5V +5V
Rprot STATUS
VCC
Dld C Rprot INPUT OUTPUT
GND
RGND VGND DGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
C I/Os PROTECTION:
If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
9/19
VN920DSP
Figure 9. Off State Output Current
IL(off1) (uA)
9 8 7 6 5 2.5 4 2 3 2 1 0 -50 -25 0 25 50 75 100 125 150 175 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Figure 10. High Level Input Current
Iih (uA)
5 4.5
Vin=3.25V
4 3.5 3
Tc (C)
Tc (C)
Figure 11. Input Low Level
Vil (V)
2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175
Figure 13. Input High Level
Vih (V)
3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 12. Input Clamp Voltage
Vicl (V)
8 7.8
Figure 14. Input Hysteresis Voltage
Vhyst (V)
1.5 1.4
Iin=1mA
7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175
1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
10/19
VN920DSP
Figure 15. Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
Figure 18. ILIM Vs Tcase
Ilim (A)
100 90
Vcc=13V
80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 16. Turn-on Voltage Slope
dVout/dt(on) (V/ms)
700 650 600 550 500 450 400 350
Figure 19. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
550 500
Vcc=13V Rl=1.3Ohm
450 400 350 300 250 200 150 100
Vcc=13V Rl=1.3Ohm
300 250 -50 -25 0 25 50 75 100 125 150 175
50 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 17. On State Resistance Vs Tcase
Ron (mOhm)
50 45 40 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 175
Figure 20. On State Resistance Vs VCC
Ron (mOhm)
50 45
Iout=10A Vcc=8V; 36V
40 35
Tc= 150C
30 25 20
Tc= 25C
15 10
Tc= - 40C
5 0 5 10 15 20 25 30 35 40
Tc (C)
Vcc (V)
11/19
VN920DSP
Figure 21. Status Leakage Current
Ilstat(A)
0.05 0.045
Figure 23. Status Low Output Voltage
Vstat (V)
0.8 0.7
Vstat=5V
0.04 0.035 0.03 0.025 0.02 0.015
Istat=1.6mA
0.6 0.5 0.4 0.3 0.2
0.01 0.005 0 -50 -25 0 25 50 75 100 125 150 175 0.1 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 22. Status Clamp Voltage
Vscl (V)
8 7.8
Istat=1mA
7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
12/19
VN920DSP
Figure 24. Maximum turn off current versus load inductance
ILMAX (A) 100
A B
10
C
1 0.1 1 L(m H )
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
VIN, IL Demagnetization Demagnetization Demagnetization
t
13/19
VN920DSP
PowerSO-10TM Thermal Data Figure 25. PowerSO-10TM PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: from minimum pad lay-out to 8cm2).
Figure 26. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
14/19
VN920DSP
Figure 27. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 100
Footprint 6 cm 2
10
1
0.1
0.01 0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Figure 28. Thermal fitting model of a double channel HSD in PowerSO-10
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 14. Thermal Parameter
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) Footprint 0.02 0.1 0.2 0.8 12 37 0.0015 7.00E-03 0.015 0.3 0.75 3 6
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
22
5
15/19
VN920DSP
PACKAGE MECHANICAL Table 15. PowerSO-10TM Mechanical Data
Symbol A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) a (*)
Note: (*) Muar only POA P013P
millimeters Min 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 1.27 1.25 1.20 13.80 13.85 0.50 1.20 0.80 0 2 1.80 1.10 8 8 1.35 1.40 14.40 14.35 Typ Max 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30
Figure 29. PowerSO-10TM Package Dimensions
B
0.10 A B
10
H
E
E2
E4
1
SEATING PLANE e
0.25
B
DETAIL "A"
A
C D = D1 = = = SEATING PLANE
h
A F A1
A1
L DETAIL "A"
P095A
16/19
VN920DSP
Figure 30. PowerSO-10TM Suggested Pad Layout And Tube Shipment (no suffix)
14.6 - 14.9 10.8 - 11 6.30
A A C C
CASABLANCA
B
MUAR
0.67 - 0.73 1 2 3 4 5 10 9 8 7 6 0.54 - 0.6
B
9.5
All dimensions are in mm.
1.27
Base Q.ty Bulk Q.ty Tube length ( 0.5) Casablanca Muar 50 50 1000 1000 532 532
A
B
C ( 0.1) 0.8 0.8
10.4 16.4 4.9 17.2
Figure 31. Tape And Reel Shipment (suffix "13TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 24 4 24 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
17/19
VN920DSP
REVISION HISTORY
Date Sep. 2004 Oct. 2004 Revision 1 - First Issue. 2 - Minor text change. Description of Changes
18/19
VN920DSP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
19/19


▲Up To Search▲   

 
Price & Availability of VN920DSP04

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X